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I. OVERVIEW AND SUMMARY

Fundamental to this work is the development of a continuum

formulation that can accurately account for the effects of

interlaminar shear and interlaminar normal stress variation P

thru-the-thickness of a laminate. Furthermore, emphasis is

particularly on tapered-twisted airfoil geometries which can be - '

analytically represented as an assemblage of thin to moderately thick

finite elements. To achieve solution efficiencies, the elements

developed in this work are of the triangular/quadrilateral plate type

as opposed to solid type elements.

On the basis of these requirements and considering viable

alternatives, three suitable continuum formulations have been

developed and are herein denoted as the (i Higher Order Displacement,

(ii) Modified-Kirchhoff and (iii) Hybrid Stress formulations,

respectively. The former two formulations have been incorporated in a

computer code and the various elements have been tested on the basis

of correlations with known analytical, numerical, and experimental -

solutions. Numerous tests have been performed for linear static and

linear dynainic cases. It is noted that the code has some unique

features, e.g., it can assemble elements having an unequal number of

degrees of freedom at its nodes, it treats arbitrary ply orientations

and it performs integration on a layer-by-layer basis through the

laminate. Herein a layer refers to either a lamina or to a sub-set of

laminae having equal ply orientations. The latter feature is

essential in developing a fully nonlinear capability.

Significant efforts hive ilso been devoted to developing a

. .o.,. .o.
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suitable large displacement formulation. Due to the requirement that

interlaminar stresses be accurately represented, a total Lagrangian

formulation is utilized and is based upon the complete Green's strain

tensor. A geometric and large-displacement stiffness formulation has

been implemented in the computer code based upon a form of the t

nonlinear strain-nodal displacement relationships suitable for each of

the elements under development.

0 An extensive literature survey has been performed to identify

analytically tractable methods of treating damage accumulation in

composites. Since emphasis in this work is on the development of

incremental response solutions, the computational approach must have

the capability to (i) predict and differentiate between relevant

failure modes, (ii) modify constitutive equations appropriately and

(Mi) perform equilibrium iterations to assure stress redistribution

based upon the extent of damage. Use of "piecewise smooth" failure

cri ter ia in conjunction with "damage state" variables provide a good

basis for incrementally tracking damage. This approach has been

incorporated in the computer code. Note that integration for an

element is performed on a layer-by-layer basis which allows for damage

effects to be characterized at the layer level.

Experimental data of the type required to substantiate damage

predictions has been assembled to the extent possible. Analysis/test

correlations have been perforned for selected laminates. It is noted

thdt useful experimental data is quite limited.

Technic.il progress in this program has been substantially on

schedule. It is beylieved that the originally proposed three year

program can be completed 4i thin the given time frame.

. '.
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II. SUMMARY BY TASK

This section presents technical highlights of the research

efforts to date for each of the three tasks. Details of the - .

analytical formulation are presented in the Appendices.

11.1. TASK I: Nonlinear Displacement Formulation for Composite Media p.

II.1.1 Continuum Formulation
rq

Two variational principles, the principle of Minimum Potential

Energy and the Principle of Modified Complementary Energy, are used to

develop tqo distinctly different finite element models, the assumed

displacement model and the hybrid stress model respectively, These

miodels incorporate the effects of transverse shear and normal

deformations whose contributions are recognized as essential for L.

accurate laminate analysis [1-10].

Within each formulation, element stiffness and force matrices are

determined for each element, these matrices are then assembled to

r.epreasent the final system of equations and a solution procedure for

thu unknown nodal displacements is provided. Coordinate

transformations to ,describe ply orientations of a cornposite- media are V . .

taken into iccount. The in-plane stresses are calculated from

corsti tutive rLlations of orthotropic continuum whereas transverse

sh.car 3nd normal stresses are calculated from equilibrium ' -

considerations. At present, emphasis is placed on the displacement
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based models and these have been tested for linear static and dynamic

analysis. The test problems and the results are presented in Section

11.1.4. The finite element models are herein briefly discussed.

i. Assumed Displacement Model .

A. Higher Order Displacement Formulation

The thru-the-thickness effects can be incorporated into an

analysis by choosing a displacement field that eliminates tNo major

shortcnings of the classical plate theory; namely normals remain

norianl and in-plane displacements are linear thru the thickness.

These shortcomings are eliminated by prescribing independently the

reference s:irface displacements and rotations of the normal and

including higher order terms for in-plane displacements. This is

acconpli ;hd by thIa following variation

'= Uo( ,y) + Z.x(X,y) + z x(',y)

v,. ,y,z) = vo(x,y) + v + z y(X,y)

/I ,y , z ) = wo(x,y )

T:i.2 neutr,±l surface disolacernents are represented by u , v and w,
0C

the rotation dbonit y-axis is denoted by , and the rotation about the

x-axis is . The coef -icients of , i.e., . and 4 ,, are

contributions fri)m trinsverse deformations [5,6].

ih,. elenents developed are designated is the quadrilateral higher

order disolac nent (QHD) models. QHD40 is an eight-noded element with

sev:', degrcs of Ireedom (three nidsurface di splacement.;, two

------------------------------.- :... .. .. .
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rotations and tWo higher order terms for in-plane displacements) per

corner node and three degrees of freedom (transverse midsurface

displac~ment and two rota Lions) per mid-side node. Element QHD28 is

a simplifi d version of QHD40 where the mid-side nodes are eliminated.

It should noted that when the two higher order terms for in-plane

displacements at each corner node are omitted, QHD28 reduces to the

widely used four-noded bilinear plate element (QHD2O).

Tha transvers(e shear and normal stresses of QHD40 display a cubic

variation thru-the-thickness. The di splacement field, nodal degrees

of fre edom and the resulting stress fields are stated in Appendix IA.

B. Modi fied-Ki rchhoff Formulation

T':i Ki jchio ff-Love assumption for normals to the reference

sorfkic i-s r:?laxedj by incorporating shear rotations as additional

d12yr. s if trz!-. don in the- formulation [10]. TMis che -3sslmed

d ispl a cfent f ielId a IlIo4s the trin sve rse s hea r de forma ti ons bu t

n- 31 cts Lhe trinsverse normal d fr2 ti )ns. The rotations and >'are

inorpore i-. in "h? IisPl acenen t vai itiin is fol lo~ls

.i(X ,y) w .i(X ,y)

L(X,y,z) = u0 (X'Y) - z('-" + '

v(X,Y.Zr) v0)(X,Y) - Y
Y

T'h 'insvc~rse di j ld-.or1en1t W(X,y) is chosen such that it will

gjariitee pldJisibl( stre-ss fi,?lds .qhich 40ll characteri ze the

trinsvorse 2ff,?,:s accura tely.

0
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This approach is implemented in the formulation of an eight-node

quadrilateral element with 32 degrees of freedom- QD32, a six-node '"

triangular element with 27 d.o.f.- TD27 and a seven-node triangular

lement with 27 d.o.f.- TD27M. The stress fields obtained for these

elements represents a quadratic thru the thickness variation for the

transverse shear stresses and a cubic variation for the transverse .

normal stress. The respective displacement fields, nodal degrees of ..

freedom and stress fields are given in Appendix IB.

ii. Hybrid Stress Model

In this formulation a stress distribution within the interior of

the ele~ment is expressed in terms of finite parameters such that

equilibriu is ttisfied, also an assumed displacement distribution is p

used on the boundary of the element expressed in terms of generalized

nodal displacements such that the interelement compatibility is

r3tined [4]. ,

f elemnent dveloped, QHS32, is a four-node quadrilateral with

3, l,2res of freedom. In addition to an assumed displacement field

i's t 2 -parameter stress field which provides cubic variation for p

trarisve rse shear stresses and a quartic variation for tr3nsverse

norilal s .rass through the thickness of the lamiTh stess field

2 )ng wi ti t, A3' Iis.)lacement viriation is statel inl \ppendix II

11.L.2. iarje il,:.;neit ,ormul~ition

Ilclusin,) of jeometricilly nonlinear etfects in the formulation

Must bC basd uPoll boti the geometry to be analyzed and upon tle type

of stress prediction capabilities ;d.?sired. The classical approach to

thin plo te inalysi s has ;en to use th, Kirchloff-Love assumptions in
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conjunction wiith the nonlinear von Karman relations [11,12]. As

previously indicated, the Kirchhoff-Love assumptions are relaxed in

this work to allogi for a imore accurate definition of

interlamiiiar-shear and interlaminar-normal stress variations. These

stre sses can vary substantially through-the-thickness for the

geometries of interest, i.e., thin to moderately thick plate type

CO structures. Furthermore, the requirement that these stresses be

accurately determined me~ans that the nonlinear portion of the

strain-displacement relationship must contain all significant

coordi nate di splacements. The complete Green's strain tensor is

utilized in this piork, therefore, to account for all significant

contri';,utiois to thi! interlami nar stress field. Wi to respect to

f ixed (ICarte s iai c oo rd ina tes, x y a nd z, the s tra in te ns or h as the

tr 0

41hor u, v and w r;?pr.-senit di splacements mnb the x,y,z coordi nate

dir_ ctions, respectively. Nute that the other strain components a re

olbtain,2d by a suitable permutation. In srall-displac:?ment analysis,

trii! qiidratic terms ire neglected to give simply th , linear strdi 0

31 i sw I on th2, Green' s s trAin tensor, thez s tria in to nodal p~oint

:) i, -i Y ) ti o)nshi 1, can he spoc i f i ed for' e :n ts inder
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.Iveloprent. It tPks the form.

whre is the vector of strain components, {1I the vector of

nodal point displacements ind [3] a function of derivatives of the

element shape functions. The quadratic terms in the strain tensor

result in [B] being a function of displacement state and, therefore,

an incremental equilibrium formulation is required. The incremental

s trAin-nodal i spi icement relationship takes the form
( --

,4here And represent incrementil strains and nodal

displaceinents, respectively, [B ] and [B ] are the small and large

dis;flaceoent oontributi,,)is to thie incremental strains. Based on the.

ln:rernental ,.'uil i rium equations, thle- displacernent formul ati on gives

t. l -d .)l.I~c L2 it ela tions1ips

T T
Lr I L' K [D]3P 0)c

j I D] is: in Ili s t i c i ty ':ia tr i x obhta i id s imnp1 y from the

3 0

c nsti tutiv-, -qu. ti ns and integration i:s over the volume V of the

e Ilene t. [K i; lena td th_ sm 11-di slaceient stiffness qatrix and

[< 1 is 'niI the lm, rge-di:;,:n> neni stiffness miitrix. Sinc" -

,* _isioIss i n c n:n ti )q of stress s t.m :, th'e geano, trical stiffness 1 i

" ir;'i ' • ;:4 rltu lrud .d it, ol)i ling ,, C-tom " 'i I ( IA U IC( fl1.IA .b jf.rj hor

1 "L'
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where is the vector of stress components. Note that the hybrid

stress formulation similarly gives force-displacement forms involving

the stress and displacement state. ..

Inertial effects are analytically treated as a mass matrix [M]

which is a function of density and the element shape functions (see

Appendix III). These matrix forms are required in formulating

static/dynamic response solutions and the incremental equilibrium have

the general form

+ ([K0] + + + [KG] f6u} {F}"

where the ress and stiffness matrices represent an assembly of the

elemental matrices previously discussed, {"1u and 161 represent the P

incremental displacements and accelerations for the ifathenatical model

and FF1 represents the vector of incrementally applied forces.

0 In developing a geometrically nonlinear formulation, the effort

is largely in defining the incremental strain-nodal displacement

r~latioriship. Having developed this relationship for a particular

element, stiffness matrices are readily developed as the preceding .

equations indicate. These relationships are presented in Appendix IV.

The form of these equations is the same for all elements.

II.1.3. Comrputer Implementation

A omputer code has n developed for the purpose of

i.npleineting the various continuum formulations. At present, the code -

o ,- •6

"' ' " -" " -" "" -4 """ "". ' . " "-"."" "' -. .-.-. .".. .... . . . ... "- "" • ' "" " ' ":, ' " " "-"-" ."."- .. ".. ." "- . .. , -.'
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performs the following functions:

element stiffness matrix (linear, nonlinear, geometric)

generation

element mass matrix generation

assembly of equilibrium equations

decomposition and solution of equilibrium equations

equilibrium iteration for incremental solutions

fundamental frequency and mode shape calculation .

A characteristic of the elements under development is that node

points can have different numbers of degrees of freedom, i.e., .--

typically mid-side nodes have fewer degrees of freedom than corner

nodes. The code has been fashioned to handle this condition. All of

the integration is performed on a layer-by-layer basis thru the

thickness of the laminate. This approach is fundamental to developing '- . -

the capability to allow for inelastic material behavior and,

ultimately, to the inclusion of damage mechanisms in the formulation.

Since solution of the equilibrium equations is a vital component

in the overall solution strategy, it is appropriate to discuss the

nu-eric-al methodology used in solving these equations. The intent is

to obtain a higher ordered variation of the transverse shear and
normal stresses ( , and tnan can be obtained via the

c.lnstitutive tqtations. The solution procedure can be thought of as

described belo..i Assumtie that the in-plane stresses (( %' 0 VV ) D

within eaich layer of a particular element have been determined at

selecte d locations, i.e., through solution of the constitutive

equations. In the code as presently written, these locations are

specified is tile element centroid and element nodal points. The

-~,-. ~ . . . . . ..-.-. ~'-~----~* ~ .A~A A..J~A- °. . .A--
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equilibrium equations (in the absence of body forces) have the S

indicial form

* ajj,1 ' "~ %'\

from which it follows that the thru-the-thickness shear stress

variation can be written in numerical form for the ith layer as

xzi -(( xx,x + xy,y)i .Zi

and

r-(Axy, x + A )Zi

N ere, the left-hand-side represents the change in stress from the

lower to the upper surface of the ithlayer and LIZ. is the thickness of

the it layer at a particuLlar location. The derivatives with respect

to x and y in the expressions above are readily computed; this is

because in-plane stresses within a layer are related to element .

displacements thrrgh derivatives of element shape functions in

conjunction with a nateridl definition.

For an n layered laminate, n equations can be written in terms of

both the unknown shear stresses at layer interfaces and the shear

stresses at the laminate surfaces. Assuming the laminate has

shear-free surfaces, the equations above give n equations in n-i

unknowns, so that, the equation set is over-determined. The equations

have the matrix form below

S." .- .

. . ........
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-1 1 xz... -

n n..

n x (n-i) (n-I) x 1 (n x )

where Ixzi= - (xxx + 5xyy) AZ. and ox. represents the shear stress

acting at the interface of the j- th and jth layer. A similar

9 equation set is obtained by replacing (Jxzj with U and Ixzi with I .

These equations are solved by utilizing a least-squares

orthonormalization procedure [13]. Due to the simplicity of the terms

in the coefficient matrix, a concise closed-form solution is obtained.

Having determined the transverse shear stresses, the transverse

normal stress variation is determined through the numerical form of

the third equilibrium equation for the ith layer

-. z z i - xz=x + " 7 '- '.= " U~Y z 'Y 'ji i..''''

As before, the left-hand-side represents the change in stress through

the tl.3yer. Appropriate polynomial functions are utilized to

describe the cx and cy in-plane variation. These functions are

differentiated to obtain the right-hand-side of the equations above.

Again the equation set is overdetermined because the normal tractions

are knovin at the laminate surfaces. Solving forozz proceeds,

therefore, in identically the same manner as discussed in calculating

JXZ and -,:V. Parenthetically, inclusion of body forces at a later date

can be accomplished with little difficulty.

It slould be emphasized that, the successful application of

Higher Order Displacement type elements, i.e., for particularly thin
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geometries, is to utilize reduced numerical integration where as this .

is not necessary for the Modified Kirchhoff formulation. This

approximation technique brings along the choice of implementing it

overall or selectively to the strain energy components. For the QHD

formulation, only the transverse shear components are integrated with

reduced order [14-16]. An undesirable aspect of this approach is that

the reduced integration order may affect the physical behavior of the .

element by introducing spurious zero energy modes. It is desirable to

have only rigid body modes since there does not yet seem to be a
C

generally accepted method of controlling the additional modes. .

11.1.4. Analytical Verification

As noted, elements formulated on the basis of independent

transverse displacements and rotations, require reduced quadrature for

good performance. For QHD40, 3x3 Gaussian quadrature along with the

2x2 quadrature for the transverse shear components in employed. QH028

and QHL)20 formulations are similarly integrated with 2x2 and lx1

Gaussian quadratures. Manipulation of quadrature rules may produce

spurious zero energy modes in addition to the required rigid body

modes, thus detracting from overall element performance. [16,17]. A

spectral (eigenvalue) test has been conducted with and without full

quadrature to observe the zero energy modes of the QHD elements. The

quadrature order, the number of zero eigenvalues and the corresponding

nunber of spurious zero energy modes for th QH)40, QHD23, and QHD20

elements ire listed in Table 1. The spurious mode shapes associated

with the QH)213 elem-ent ar illustrated in Figure 1. Since tile QHD40
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formulation does not exhibit spurious modes, it can be utilized in

modelling complex geometries without concern for controlling such

behavi or.

It is also noteworthy to observe the effect of reduced

integration on the representation of the generalized forces. In 9...... -

order to illustrate the effect, the forces associated with the

transverse displacement of a corner node are sketched in Fig. 2 for

QHD28 with and without reduced integration respectively. .

In the examples that follow, performance of the QHD formulation

is demonstrated by comparing results to those obtained by classical

plate theory (CPT), by elasticity and by other finite element IP

formulations for linear static and linear dynamic analyses. Some

results are also presented for the QD formulation. The orthotropic
0

material properties used throughout arc tabulated in Table 2. .

Geometries studied include cylindrical bending of a plate as well as

bending of simply sipported square and rectangular plates. Various
0

ply layups are considered and loading is that of a sinusoidally and P

uniformly distributed pressure. Cylindrical bending is modelled as a

strip of tqenty elements. For the simply supported plates, symmetry

considerations allow that only a quadrant of the plate need be

modelled. Fineness of the mesh is varied to demonstrate solution

convergence. Additionally, distorted meshes are considered to

demonstrate modelling considerations. For the examples involving

symuetric layups, the quadratic terms of QHL)40 are restriined; so

that, 32 .. of freedom ele,nents are utilized to obtain these

soluti ons. This is all~wable in these particular cases because the

qIaifirtic terms do not signi ficantly affect the resul ts. This is not

"-._ -Z - -L _L ." .'..-'_,''/. 1 .''. ": '-- ._ ' L'.. ..-../_." . .. , . -., .. . . , . " ." ." . .' .' ". ,"., ., .., . . ." .. .-.,
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true in the first example considered.

Static Res2ponse CaZculationc

Cylindrical Bending- Bidirectional (0 /90) Sine Load, Material II

Fibers run parallel to the plane of curvature in the lower layer

and are rotated 90 in the upper layer of the plate. Layers are of

equal thickness which is true in the subsequent example problems as

well. The elasticity solution obtained by Pagano [9] gives a nearly

quadratic z variation in u, where u is the normalized in-plane

displacement of the laminate. In this instance, inclusion of the z

terms in the finite element modelling should affect the results. This

is demonstrated in Figures 3 to 5. Results demonstrate differences

obta,,,d with and without quadratic terms. The difference is greatest

for the lower aspect ratios, e.g., for S = 4 a difference of 12% is -

obtained. In Figure 4, the calculated normalized in-plane stress ,

variation is presented for an aspect ratio of 4. Note that maximum

variation is presented for an aspect ratio of 4. Note that maximum

stresses differ by some 36% when computed with and without the z

terms, respectively. The effect of including quadratic terms in the

finite element solution is, therefore, much more pronounced when

stresses as opposed to displacements are considered. Figure 5

demonstrates this effect on stress computation as a function of aspect --

ra.1o. Note that calculated quantities are normalized in this example

and in those that follow as in the cited references.

Cylinirical Bending-Symmetric (0 /90 /O)Sine Load, Material II

For this geometry, fibers are parallel to the plane of curvature

*i ,'-

I iimuii~niii~uiuinmiiiiiiniiiii~riiiii,.-..ioi,,.ii ,,,-iii.i
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in the outer layers and rotated 900 in the middle layer. Calculated

stresses are compared to the elasticity solution of Pagano [9].

Figures 6 and 7 present the normalized transverse shear stress . ,..,.

variation at the simply supported boundary. Figures 8 and 9 present

the normalized in-plane stress variation at the center of the bent

surface.

Simply Supported Square Plate- (0 /90 /0) Sine Load, Material II

Fibers in the outer layers of the laminate run parallel to the x

axis while those in the middle layer run parallel to the y axis, where

the origin of coordinates is located at a corner of the plate and in

the mid-plane (see Figure 10). This coordinate system is consistent

with examples that follow as well. Consider the plate as having

planar dimensions a x a and total thickness h. Solutions have been

generated for aspect ratios S = 4 to 100, where S = a/h. Transverse

shear stress variation at (x,y) coordinates (O,a/2) and in-plane

shear stress variation cXV at coordinates (0,0) are presented in .

Figures 10 and 11 for an aspect ratio of 4. Note that the comparison

is between the present finite element results and those obtained via

elasticity [18] and CPT. Calculated short-transverse normal stress

variation czz is presented in Figures 12 and 13. These stresses are

normalized as Jzz = 0,,/1O0 at the center of the plate and as "-zz= 10'-z,

at the edge of the plate. Results are compared to those obtained by

elasticity over a range of aspect ratios in Table 3. Similar results

are given in Table 3.1 for the QD formulation. Convergence

characteristics are demonstrated by presenting results obtained using

2x2, 3x3, and 6x6 meshes. The finer mesh gives better agreement, but

7 0

................................................. . .. . .
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the coarser mesh gives very reasonable correlation also.

The effects of distorting the mesh have also been considered to a

limited extent. Results have been obtained for the relatively coarse

meshes shown in Figure 14. Calculated stresses and displacements are

presented as a function of aspect ratio and compared to the elasticity

solutins in Table 4. As expected, the values are not as accurately

determined as are those obtained via the regular meshes. Distortion 0.

of the mesh has a much more dramatic effect upon the calculated

transverse shear stresses than upon the calculated in-plane stresses

and displacements. Since the transverse stresses are based on

equilibrium considerations, it seems the mesh must be refined enough

to reasonably approximate equilibrium. This is especially apparent in

comparing results obtained for mesh A to those obtained for mesh C. I - -

In each of these cases, elements having a taper ratio of 2 to I are

utilized. Mesh C gives significantly improved transverse stresses,

however, because the mesh is fine enough to better represent the

loading distribution.

Simply Supported Rectangular Plate(O /90 /0) Sine Load, Material II

Orthotropic layers have the same orientation as in the previous

example. The plate has dimensions a x b, where b is three times a.

Solutions have been obtained for aspect r.tios (S a/h) ranging from .,.

4 to 100. Transverse shear stress variation \,z at coordinates (a/2,0)

is ,given in Figure 15 for an aspect ratio S 4. (omparison is made

to both elasticity and CPT solutions. A full range of results are

presented in Table 5 and compared to those obtained via elasticity

........................ . .... ... ... ... ... ... ... ...
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[18] and to those obtained by Reddy [19] in a recent finite element

formulation. Correlation with elasticity is quite good, particularly

for aspect ratios of 10 and above, and appear to be more accurate than

those obtained with the alternate finite element solution.

Simply Supported Square Plate (0 /90 /90 /0) Sine Load, Material II

The laminate geometry consists of outer layers with fibers

parallel to the x axis and inner layers with fibers parallel to the y

axis. The plate has planar dimension a x a and total thickness h.

Stress and displacement results are presented in Table 6 for aspect

ratios ranging from 4 to 100. Similar results are given in Table 6.1

based on the Q[ formulation. Results are compared to both elasticity

and to other finite element results. Again, the computed values are

in excellent agreement with elasticity [20] for moderately thick to

thin geometries and are more accurate than, the compared to numerical

resul ts.

Solutions also have been obtained for the present geometry on the

basis of reduced vs. full integration. This comparison is

demonstrated in Figures iS and 17 by giving percent error in

calculated values vs. aspect ratio. It is apparent that reduced

integration is particularly needed to minimize errors in calculated

trdrnsverse str-sss and, furthermore, solution validity over a wide

range of laminate geometries is demonstrated.

To assess th effects of finite element formulations, aspect

ratio, support condi tions and the lamina stacking sequences on the

fundamental nitural frequencies of composite plates, the problems



19 S

listed in gaDle 7 are considered [2i] S

The non-dimensionalized fundamental frequency for the cross-ply

laminate of Proolem 1 versus aspect ratios is given in Table 8. As

can be seen, all three elements predict frequencies that are in

excellent agreement with the closed form solutions obtained by Reddy

[22J.

The effects of higher order terms in the displacement based S

finite element formulations are investigated for Problem 2. Here, the

performances of QHD40 and QHD23 (with higher order terms locked) are

compared to elements STPL1 and STP03 of [23] with linear and cubic

variations through the thickness respectively. The results are

summarized in Table 9. The normalized fundamental frequencies of

Problem 3 are displayed in Figure 13. Note that the I

non-dimensionalized fundamental frequency increases as the angle of

orientation is increased for both symiytric and anti symmetric

angle-ply square plates. This observation is in excellent agreement I

with Reddy's [22] antisymmetric laminate. In Figure 19, a decre. se in

the fundamental f,_quency is observed as the angle of orientation is

increased for the angle-ply, cantilever, rectangular and square plates

of Problen 4. The difference between Figures 13 and 19 are attributed

primarily to the different support conditions.

Furt;ier investigations, Problen 5, of angle-ply laminates are

sumriarized in Table 10. The sticking sequences of reference [24] are

used to illistrite their effects on the fundamental frequency

c1lcla tions. Th3 num;)f:rs aithin parenthesis are calculated by

Criwley [24, _5].

• . . .... .1... . . .
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Shown in Figure 20 is the variation of the non-dimensionalized

fundamental frequency for, cylindrical bending problem, as calculated

via the QD formulation and the classical plate theory. For comparison

purposes, the frequencies are normalized with respect to the classical

plate theory results.

Element performance has been evaluated with respect to predicting

linear-transient response. Both displacements and stresses have been .

determined for a variety of laminated plate geometries subjected to

instantaneously applied pressure loading. These results have been

compared to those obtained via both CPT and a shear deformable theory

(SDT) [26]. Typical results are presented in Figures 21 and 22 for a

(0/90) square plate [27]. In this example, the plate is quite thick

in that it has an aspect ratio of 5. .

11.2. TASK I: Incorporate Damage >echanisms into Dynamic Response

Formul a tion

The literature survey [28-63] performed has been quite helpful in

terms of delineating the viable approaches to including damage

mechanisms in the analysis. Relevant failure modes of interest

include tiDse 1 i sted be I ow

i) fiber fracture

(ii) riier-iiatrix debonding

(iii) mtrix cracking (parallel and transverse to fibers)

(iv) delami na tin.

Severil s-iotii f ilure criteria, e.g. [64-67] have been developed in -.

recent yeirs to r-'wes,?nt the fa3ilure of cainposi tes. These criteria,

I '
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to varylilq deyrees, cliii predict "failiure" bur do not identify a

particular mode of failure. In performing incremental "damage"

analysis, it is essential to both predict failure and to characterize

it, e.g., do fi.bers rupture, does delamination occur, etc. The

computational approach must, therefore, differentiate between viable

failure modes and appropriately alter the constitutive equations on

an incremental basis. This can be accomplished by impementing a • -

pieceuse smooth failure criteria, e.g., [28] in the finite element

fornulation. The general failure criteria is then comprised of m -

separate inequali ties of the form

at te layer level within each element. These criteria can

differentiate between M tensile and compressive fiber failure, (ii)

tensile nd compressive matrix failure cnd (iii) delamination at

B layer interfaces.

As progressive damage occurs throughout incremental loading

(%qheth r) i t De static or dynami c) , i t i s essential that violati on of

failure criteria inequalities be retlected in modification of the

matirial properties. This can be achieved by including dainage stat•

variables [47] in th constitetiveg. equations to reflect "stiffness

rduction." Tn2se equations can be represented as I

.h'e[D] redresonts tho iraterial matrix and [ contai ns the2 damage

seit variables. The itter provid the basis for changing thI

.
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terms based upon the extent to which the failure criteria are

violated. S

In conjunction with the above it is essential to perform

equilibrium iterations within each analysis increment. This is .

required to assure that stress redistribution is properly accounted

for as damage progresses.

The relevant failure nodes of interest and appropriate criteria

used in the incremental analysis are listed in Table II.

The damage histories of graphite/epoxy (T300/5208) composite

laminates under in-plane load increments are presented for selected

models [68]. The ability to differentiate between relevant

failure/damage modes is illustrated in Figures 23 and 24. -

11.3.3 TASK IIf: Correlation of Formulated Response Model with. .

Experimental Data I

Some qua.titative data relating to the impact damage of composite

specimens has 5_en assembled [69-76]. It will be utilized along with

any additional data obtained to perform analysis/test correlations. I A

Sinc the nonlinear formulation including damage effects is not

complete, no use of the test data has been made to this point.

S 0
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Table 1. Spurious Zero Energy modes of the QHD Family

Number of Zero Number of Spurious
Quadrature Order Eigenvalues Modes

3x3 with 2x2
QHD40 for transverse 6 0

shear terms

Wx with 1x1
QHD28 for transverse 9 3

shear terms

Wx with lxi -

QHD20 for transverse 8 2
shear terms
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TABLE 2

Material Properties used in the sample problems

MATERIAL E1/E2  G 121E 2  G 3/E lb-e4
in

I40 0.60 0.5 0.25 .7124xlO0-

II 25 0.50 I 0.2 0.25 .7124x10-'

111 11.6 0.10.14 0.25 .1425x10 3  I

IV 1 25 I - 0.25 1 .7124xl0'

_ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ _
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TABLE 3.1 0

.Y y .v z y z .v-
Approach a a h a a h+1 a(i -) , , _* ) (o, 0, - ) (0, 0, ) 5, o,0) ...-, ,

Y22' 6

4 FEM (3x3 Mesh) .399 .562 .0513 .372 .304

FEM (6x6 Mesh) .392 .543 .0463 .357 .280

Elasticity .755 .556 .0505 .282 .217

FEM (3x3 Mesh) .514 .246 .0299 .406 .175

10 FEM (6x6 Mesh) .502 .270 .0284 .387 .142

Elasticity .590 .288 .0289 .357 .123

20 EM (31 0x3 Mesh) .547 .157 .0245 .418 .141

20 FEM (6x6 Mesh .533 .186 .0234 .398 .107

Elasticity .552 .210 .0234 .385 .0938

FEN (3x3 Mesh) .558 .128 .0227 .423 .130

50 FEM (6x6 Mesh) .543 .159 .0219 .402 .0961

Elasticity .541 .185 .0216 .393 .0842

FEM (3x3 Mesh) .559 .123 .0225 .423 .128

100 FEM (6x6 Mesh) .544 .155 .0216 .403 .0944

Elasticity .539 .181 .0213 .395 .0828

C:T .539 .1O .0213 .395 .0823

II

i I
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TABLE 8 -

Nondimensionalized Fundamental Frequencies of Simply Thupoorted,

Square, Cross-ply Plate of Problem 1.

Aspect Finite Element Solution Closed Form
Ratio Solution

QHD28 QHD40 QD32 Pqference [4]

*2 5.860 5.525 5.824 5.500

4 9.780 9.757 9.706 9.359

*10 15.440 15.340 15.276 15.145 3

20 17.850 17.719 17.628 17.665

425 18.246 18.103 18.006 18.093 1

100 18.964 18.805 18.704 18.733
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TABLE 10

Nondimensionalized Fundamental Frequency

of Cantilever, Angle Ply Plates of Problem 5

Lamina Stacking Sequence

[4 [0Aspect Ratio [±45, : 45] s [02, ±301 [0 ±45, 90]a/t

2 1.17 1.72 1.64

5 1.43 2.792.47

10 1.53 3.02 2.73

20 1.60 3.31 2.82

24 1.62 3.32 2.83

144 1.68 3.35 2.86
(1.64) (3.35) (2.85)
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APPENDIX IA -HIGHER ORDER DISPLACEMENT MODELS

QHD40

NODAL DEGREES OF FREEDOM:

T0Corner Nodes -{U 0 vo Wo iPx ipy kx

Mid-side Nodes NO x I

u u U0 + ZX+ Z

V =V 0 + Zipy + 2

Ww

* where;

Tu0, Vol0 , o { x y xy} {x

X 2 Xy2 Xy ylTWa, :)X, ipy :{ yy xyx 3

0 STRESS FIELD:

i. From constitutive relations -ai Cijci (orthotropic mat.)

0 x= f (Z, X2, y 2)

=f(Z
2 , X2, y2)

OXY= f(Z2, X2, 2)

i. From equilibrium considerations -aij = 0

=X fz X, Y)

0yz =f(z
3 , x, y)

U = f(z3)



QHD28

NODAL DEGREES OF FREEDOM:

DISPLACEMENT FIELD:

o~~ + Z% ~p

V 0 +ZI~y + Z2c y

where;
T

U0 9 V0, Wos ipl y 0X : {1 x .y xy} {c}

* STRESS FIELD:

i. From constitutive relations -aij Cij~j (orthotropic mat.)

*x f(Z2, x, y)

x, y

G f(z2 , X, A)

ii. From constitutive considerations - Oj,j =0

Clz f(z3 )

0 f(z3 )

a constant



APPENDIX LB -MODIFIED KIRCHHOFF FORMULATION

* QD32

NODAL DEGREES OF FREEDOM:

Corner Nodes IWO v w w 9W Y

x y

Mid-Side Nodes fw w T

DISPLACEMENT FIELD:

w = f(x, y)

where; vv

T
U0 , Vol X1 { x y xy} fa

We X Y X2 y y2 X1 X3 Xf_ y3 X4x x3y Xy3 y4 X4 Y)fjk

STRESS FIELD:

i. From constitutive relations - 3i Cijc:ij (orthotropic mat.)

=fzx2, y2)
=x f(z, x2  y2

Oxy =f(z, x 2, y 2)

ii. From equilibrium considerations - j = 0

f(Z, 22 2)

0xYZ = TI(Z2, X2, Y2)

=z f(Z3, x, Y)



TD2 7 TD27 M

NODAL DEGREES OF FREEDOM

DW cw T T,
fu0 vo w * Y h-- Yy1 ~ Corner Nodes fu v0 w.,-- x y

{~Mid-side Nodes 1w)~

Center Node {w 21- 2,-I

DISPLACEMENT FIELD

w f(x, y) -

0 z ( X)

where; + )

L10 Vo y '4 Y

NY X X y X3X y . Xy7x

STKESS FIELD

i. From1 LonstitUtive relations -i C.i; ijj (or-thotropic ;'3t.)

xx f(z

(7 y f(z, X 2 y:

y f (z, x y

ii. From e fiiibrium cons iderations- i'j 0

=f(z', x, y)

f(zi)



APPENDIX II - HYBRID-STRESS FORMULATION

QHS32

DISPLACEMENT FIELD:

u u 0 + zpx + Z%

v = vo + Z y + z2

w wo + %

where; 
- -

xy}T~c } ... -
Uo, Vo, x, *y, ttz' x' Y:{ x y xy-" la) 1

STRESS FIELD:

x  (8I +82 x + 83Y + 4xY) + z( 5 +6 X + 87Y + 8SxY)
+ z2 (2 +3 + + 8y - , xy)

y )12 + 313X + 314Y- 8,xy) + Z( 15+ ,,SX+ -7Y + 3 3 xy)

+ Z2 (3 19 - x
- iY + 3,xy)

xy =[; + (- - h~h2 + (-h2 - - <)Y

(-; - t319 )xY] + z [ 23
+  

2 t x + t2sY + (-j -£e - 3 )xy] ....- >.

+P:_ + 1  ? + +

='Z (-h - z) [ -i i1 + #= ) + 8+,y + (-i3- 1319)x] i-:::.:
3 3

+ + 825+ :-: + ... + )

+-1j(-h3 -  z3)I,10 - {[y+ g + p: 1, )x].-L,.-.°

= (-h - z)[-f -ge+- h 1 ) + (-,3Go t819)y - :Ux] :":...':

+ *(h2 - z2)Il";:, - .(, + G~ ) + 7 + x ..

1 .3 3+ 3- (-h3- z) 1 + ( + I?19)y - )+ .Ix "

= (-h+ z) [,-(h + z) 2 - (-2 3hhz + +2,.-4hz +

. . ---

I I i . , I I "I J I 
I  

I 
I 

I - i I " * "I I - - " "l l " 
I  

" I 1 I II 1P ) Z ) h 2 +" I " ' I .II Z i t " . ' , I - '
lj~~y 219 )y x I- I 

I
III I " i I I 'II 1j. il 

I
IIIli.I ' I . .I I I 

-
I IiI I III -II
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APPENDIX III - MASS MATRIX FORMULATION

,--N. -.

The mass matrix for elements under development is easily arrived at

by considering kinetic energy in the form

T J(u + w )dV P

V

where u, v and w represent displacements, p is the mass density and the

0 dot superscript denotes velocity. Defining velocities in terms of element .

shape functions gives

T = 1 E p{Nu}[Nu] + {Nv}[Nv] + {Nw}[Nw] dV {A}

V

which is the classical form

* T 1T :- [AIT[M]{A} -

The element mass matrix [M] is, therefore, specified as

• [M] = f {Nu}{Nu} + {Nv}{Nv} + {Nw}{Nw} dV

V

Note that the shape functions [Ni] involve distance from the mid-plane

of the element to a layer denoted by Z and, therefore, the mass matrix

definition provided not only represents mid-plane inertial effects but

also rotatory inertia as well.

--1

L .

.I

.........................
•.-'. -"-. -. ..." ," ."-.' "'... .- --' .- '-.' -...-.."•..-.."-..-..-..-"...-..-'...""-."'..'...,.".'...-.'...... '....'"""":::- -



APPENDIX IV - LARGE DISPLACEMENT FORMULATION

* S

Based on Green's Strain Tensor, the following procedure is utilized
to obtain the large displacement and the geometric stiffness matrices.

Let N be shape functions relating displacements at any point in the .- -
element {6} to nodal displacements {A) such that

* p.
( } [N]{:}

Also let {Ni,j}T denote those shape functions associated with the ith

displacement field (i - u,v,w) and ",j" denotes the differentiation with
respect to the jth coordinate, i.e., where x, = x, x2 = y and x3 = z.
Then, the strain cx given by

Exx - xx 2 .T. .U +L .-

Similarly, the shuar strain cy can be representcd by

Tc- IA T T] -T. T£x x =[ Nu ~ N + N' " , " x + +  y j vx i { xv".-

SI+ {Nw . wy} ,,

The strain field in indicial notation is expre ssd by i] )

{cji - ri J + .~j i) .TF., .T .,}]D .

'3. Ij 1i J.J+ 
.. 

L.l 
".'j

-- -. .. -5.-... .

. . .. S. - * . . .. .S . .S . . . ° . . . .
. .



Then the increm-ental representation becomes

+ f {NM i{Nk,j}1{fM}1

*But the second term can be expressed as

W }[{Nk.}T{Nk} UAI

* Thus combining terms

-c j 2 L Ni jjT + {N. lTj + {AJT E{Nk i .}T{Nk .} +{Nk ,j}T{Nk,i)] {L}

Let

[Be] .~.{Ni)T + {NjiT] ATM

fn} [M~~

[BL] 1 1 [INki *QNk .1 {Nk 1T Nk~i)] = A Mxyl

h [Mxz]

L A [MYZI]

Then

f R j Go + [BL I iA

where [B0] is the linear component and [BL] is the large displacement component
Having the definitions for [B0] and [BL], the small and large displacement

matrces[K0  ad [LiI are represented as

[K0] f [BO]T[D][B 0]dV

V

T T T[KL] f [GLI][D][BRI + [LBI[D][BL BD]D[BId

V



The geometric stiffness matrix is also derived from [BL] and it has the
following form

[KG] f(Oxx[Mxx] + GyY[Myy] + Gzz[Mzz] + Oxy[Mxy] + GXZ[MXZI

V

+ GYZM])I dV

D Where the u's are the stress components and again integration is on a
layer by layer basis.

k
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